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The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181)
of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is
extended to account for horizontally viscous effects. To this end, we add horizontally
viscous terms to the hydrodynamic model (linearized depth-averaged shallow-water
equations on a rotating plane, including bottom friction) and introduce a no-slip
condition at the closed boundaries.

In a straight channel of infinite length, we obtain three types of wave solutions
(normal modes). The first two wave types are viscous Kelvin and Poincaré modes.
Compared to their inviscid counterparts, they display longitudinal boundary layers
and a slight decrease in the characteristic length scales (wavelength or along-channel
decay distance). For each viscous Poincaré mode, we additionally find a new mode
with a nearly similar lateral structure. This third type, entirely due to viscous effects,
represents evanescent waves with an along-channel decay distance bounded by the
boundary-layer thickness.

The solution to the viscous Taylor problem is then written as a superposition of
these normal modes: an incoming Kelvin wave and a truncated sum of reflected
modes. To satisfy no slip at the lateral boundary, we apply a Galerkin method.
The solution displays boundary layers, the lateral one at the basin’s closed end being
created by the (new) modes of the third type. Amphidromic points, in the inviscid and
frictionless case located on the centreline of the basin, are now found on a line making
a small angle to the longitudinal direction. Using parameter values representative for
the Southern Bight of the North Sea, we finally compare the modelled and observed
tide propagation in this basin.

1. Introduction
Tidal dynamics plays an important role in large-scale semi-enclosed basins like

the North Sea. Coastal safety, navigation and ecology are all affected by the tide,
directly through fluctuating water levels and oscillatory currents, as well as indirectly
through the presence and dynamics of tide-induced bedforms like sandbanks and
sandwaves (Dyer & Huntley 1999). To study the propagation of a tidal wave from
a process-based modelling perspective, two approaches exist: (i) numerical models
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with realistic geometries to reproduce and predict tidal observations and (ii) idealized
models to obtain insight into physical mechanisms.

In the literature, many models of the first type can be found (Sinha & Pingree 1997;
Fang et al. 1999; Cai et al. 2006). Usually these models contain a horizontal eddy
viscosity, which represents lateral friction. Since this parameter is difficult to quantify,
it is often treated as an overall tuning parameter to improve model performance.
The horizontal viscosity affects the energy transfer among tide constituents (in a
nonlinear model) as well as the numerical stability. In addition, the numerical schemes
usually introduce numerical/artificial diffusion, which obscures the role of the physical
viscosity in the model results.

To understand the effects of a horizontal viscosity on various aspects of tide
dynamics, we adopt a model of the second type, with a strongly simplified geometry:
a semi-enclosed rectangular basin of uniform depth and width. The problem of
(coastally trapped) Kelvin wave reflection in such a basin geometry was first studied
by Taylor (1921), using an inviscid hydrodynamic model, i.e. depth-averaged linearized
shallow-water equations on a rotating plane. The solution is a superposition of an
incoming Kelvin wave, a reflected Kelvin wave and an infinite series of Poincaré
modes, generated at the closed end to satisfy the no-normal flow condition. The
resulting amphidromic system displays elevation and current amphidromic points
alternatingly on the centreline of the basin, provided the channel is sufficiently narrow
for all Poincaré modes to be evanescent (LeBlond & Mysak 1978). Taylor’s strongly
idealized model qualitatively reproduces the main features of tides in large-scale
basins like the North Sea (Brown 1987).

Several extensions of Taylor’s model can be found in the literature. Following
Proudman (1941), Hendershott & Speranza (1971) replaced the no-normal flow
condition at the closed end with a partially absorbing one, which reduces the
amplitude of the reflected Kelvin wave and shifts the amphidromes away from the
centreline. To estimate the absorption coefficients for the Adriatic Sea and the Gulf
of California, two Kelvin waves were fit to tide observations in the central parts of
these basins. Alternatively, Rienecker & Teubner (1980) incorporated a linear bottom
friction formulation (vertical friction), which causes damping of the (Kelvin) waves as
they propagate, shifting the amphidromes on to a straight line making a small angle
with the boundaries. The positions of current and elevation amphidromic points
have been investigated in detail by Xia, Carbajal & Südermann (1995), Carbajal
(1997) and Rizal (2002). To mimic the effects of the Dover strait on the North
Sea, Brown (1987, 1989) added an oscillatory along-channel flow at the closed end.
The three-dimensional flow structure has been investigated numerically by Davies &
Jones (1995, 1996) and (semi-)analytically by Winant (2007), who developed a three-
dimensional model of tidal flow in narrow estuaries with a parabolic lateral bottom
profile.

In this study, we will extend the Taylor problem to account for horizontally viscous
effects (lateral friction), which has not been addressed so far. How do they affect the
properties of a Kelvin wave and the way in which it is reflected at the basin’s closed
end, as well as the resulting amphidromic system? And how do horizontally viscous
effects compare to those of another dissipation mechanism, namely bottom friction?
Analogous to Taylor’s approach outlined above, our model allows for a (semi-)
analytical solution, written as a superposition of wave solutions in an infinitely long
channel. Our analysis therefore also describes the effects of viscosity on the existence
and properties of these individual modes, such as the Kelvin mode. The method



Horizontally viscous effects in a tidal basin 423

(a) Infinite channel (b) Semi-enclosed basin
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Figure 1. Definition sketch of the geometry: (a) infinite channel with longitudinal boundaries
at y∗ = 0, B∗; (b) semi-enclosed basin with an additional lateral boundary at x∗ = 0.

excludes numerical diffusion, while resolving all relevant length scales associated
with boundary layers and the interior of the domain. Unlike the three-dimensional
model of Winant (2007), our depth-averaged approach is not restricted to narrow
basins.

This paper is organized as follows. First, § 2 contains the model formulation,
including horizontally viscous terms, a linear bottom-friction formulation and no-slip
boundary conditions. Next, in § 3 we derive the normal modes, i.e. wave solutions
proportional to exp(i[σ ∗t∗ −k∗x∗]). In our forced time-periodic problem, we emphasize
that the angular frequency σ ∗ is fixed and real, whereas the wavenumber k∗ is complex
(Ripa & Zavala-Garay 1999). This contrasts e.g. with the study of Davey, Hsieh &
Wajsowicz (1983) of viscous Kelvin waves in which k∗ is real and σ ∗ complex,
which is suitable for initial value problems. Our analysis identifies viscous Kelvin and
viscous Poincaré modes, as well as a new type of mode. (In our study, the terms
viscous/inviscid are used to denote the presence/absence of horizontally viscous
effects, and frictional/frictionless refers to the presence/absence of bottom friction.)
The properties of these modes are analysed in § 4, adopting parameter values that
are typical for the Southern Bight of the North Sea. In § 5 a superposition of normal
modes is considered to solve the viscous Taylor problem, using a Galerkin technique.
We then compare our idealized model results with tide observations from the North
Sea. Finally, the conclusions are given in § 6.

2. Model
Consider a tidal wave of angular frequency σ ∗ (dimensional quantities are denoted

with an asterisk) and typical elevation amplitude Z∗ (several metres) in a rectangular
section of a rotating channel of uniform depth H ∗ (tens of metres) and width B∗

(tens to hundreds of kilometres). We define a three-dimensional coordinate system
with horizontal components x∗ and y∗ and a vertical coordinate z∗ pointing
upward from mean sea level. We now consider two geometries, as depicted in
figure 1. The first is an open channel of infinite length with longitudinal channel
boundaries at y∗ = 0 and y∗ = B∗ (figure 1a). The second is the actual geometry of
Taylor’s problem: a semi-enclosed basin with similar longitudinal boundaries and in
addition a closed lateral boundary at x∗ = 0 (figure 1b). The free-surface displacement
is denoted by z∗ = ζ ∗, and we introduce depth-averaged flow velocity components u∗

and v∗ in the x∗- and y∗-direction, respectively.
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Conservation of momentum and mass is then expressed by the nonlinear depth-
averaged shallow-water equations, according to

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ − f ∗v∗ +
r∗u∗

H ∗ + ζ ∗ = −g∗ ∂ζ ∗

∂x∗ + ν∗
[
∂2u∗

∂x∗2
+

∂2u∗

∂y∗2

]
, (2.1)

∂v∗

∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ + f ∗u∗ +
r∗v∗

H ∗ + ζ ∗ = −g∗ ∂ζ ∗

∂y∗ + ν∗
[
∂2v∗

∂x∗2
+

∂2v∗

∂y∗2

]
, (2.2)

∂ζ ∗

∂t∗ +
∂[(H ∗ + ζ ∗)u∗]

∂x∗ +
∂[(H ∗ + ζ ∗)v∗]

∂y∗ = 0. (2.3)

Here, t∗ is time, g∗ the gravitational acceleration, f ∗ = 2Ω∗ sinϑ a Coriolis parameter
(with latitude ϑ and Ω∗ = 7.292 × 10−5 rad s−1 the angular frequency of the Earth’s
rotation), r∗ a linear bottom-friction coefficient and ν∗ the horizontal eddy viscosity.
Typical parameter values will be detailed in § 4.1.

We impose a no-slip condition at the closed boundaries,

u∗ = v∗ = 0, (2.4)

to be satisfied at y∗ = 0, B∗ for all x∗ (for the channel geometry in figure 1a) or at
y∗ = 0, B∗ for x∗ � 0 and at x∗ = 0 for 0 � y∗ � B∗ (for the semi-enclosed basin
geometry in figure 1b). The inviscid case (ν∗ = 0) admits only a no-normal flow
condition. The Taylor problem is forced by a Kelvin wave, coming in from +∞. The
existence and properties of such a viscous Kelvin wave are investigated in § 3.

Now let us introduce non-dimensional quantities

ζ =
ζ ∗

Z∗ , (u, v) =
(u∗, v∗)

U ∗ , (x, y) = K∗(x∗, y∗), t = σ ∗t∗, (2.5)

with typical velocity scale U ∗ = Z∗√
g∗/H ∗ and reference wavenumber K∗ =

σ ∗/
√

g∗H ∗, both associated with a classical Kelvin wave, inviscid and without bottom
friction. At lowest order in the gravitational Froude number, i.e. at O(Fr0), with

Fr =
U ∗

√
g∗H ∗

(
=

Z∗

H ∗

)
, (2.6)

we obtain the following set of linear model equations:

∂u

∂t
− f v + ru = −∂ζ

∂x
+ ν

[
∂2u

∂x2
+

∂2u

∂y2

]
, (2.7)

∂v

∂t
+ f u + rv = −∂ζ

∂y
+ ν

[
∂2v

∂x2
+

∂2v

∂y2

]
, (2.8)

∂ζ

∂t
+

∂u

∂x
+

∂v

∂y
= 0. (2.9)

Here we have introduced a dimensionless Coriolis parameter f = f ∗/σ ∗ (equal to the
inverted Rossby number), a dimensionless friction coefficient r = r∗/(H ∗σ ∗) and a
dimensionless viscosity ν = σ ∗ν∗/(g∗H ∗). The no-slip condition (2.4) reads u = v = 0,
to be satisfied at the closed boundaries y = 0, B where B = K∗B∗ denotes the
dimensionless channel/basin width (and, for the basin geometry, also at x = 0).

The system of linear equations (2.7)–(2.9) can be rewritten into so-called polarization
equations, expressing the individual velocity components in terms of the free-surface
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elevation ζ only (see e.g. Pedlosky 1982, § 3.6, for the inviscid and frictionless case).
The viscous polarization equations are given by

(L2 + f 2)u = −
(

L
[
∂ζ

∂x

]
+ f

∂ζ

∂y

)
, (L2 + f 2)v = −

(
L

[
∂ζ

∂y

]
− f

∂ζ

∂x

)
. (2.10)

Here, we have defined the differential operator L = ∂/∂t + r − ν∇2, with Laplace
operator ∇2 = ∂2/∂x2 + ∂2/∂y2. Next, substitution of these results into the continuity
equation (2.9) provides a single fourth-order partial differential equation for ζ , referred
to as the viscous Klein–Gordon equation:

(L2 + f 2)
∂ζ

∂t
− L∇2ζ = 0. (2.11)

3. Wave solutions in an infinite channel
Let us represent the solution as φ = (ζ, u, v). For the infinite channel geometry of

figure 1(a), we now proceed by seeking solutions of the form

φ(x, y, t) = φ̂(y) exp(i[t − kx]) + c.c., φ̂(y) = (ζ̂ (y), û(y), v̂(y)), (3.1)

with lateral structures ζ̂ (y), û(y) and v̂(y), respectively. The wavenumber k = kre +ikim

is to be obtained from the subsequent analysis. Without loss of generality, we restrict
our attention to wavenumbers with kim � 0, i.e. to wave solutions that remain bounded
in the positive x-direction. By symmetry, wave solutions that remain bounded in the
negative x-direction can then be found from applying the transformations k �→ −k,
y �→ B − y and (u, v) �→ (−u, −v).

Let us proceed analogously to the analysis of Pedlosky (1982, § 3.9) but include both
bottom friction and viscous effects. It follows from (3.1) that the time derivative and
the space derivative in the longitudinal direction now become algebraic: ∂/∂t = i and
∂/∂x = −ik. In particular, we may write L = iγ 2+ν(k2−∂2/∂y2) with γ 2 = 1−ir . The
viscous Klein–Gordon equation (2.11) reduces to the following fourth-order ordinary
differential equation for ζ̂ (y):

a
∂4ζ̂

∂y4
+ b

∂2ζ̂

∂y2
+ cζ̂ = 0, (3.2)

with complex coefficients

a = ν(1 + iν),

b = −iγ 2(1 + 2iν) − 2ν(1 + iν)k2,

c = i(f 2 − γ 4) + iγ 2(1 + 2iν)k2 + ν(1 + iν)k4.

⎫⎬
⎭ (3.3)

Equation (3.2) leads to exponential solutions of the general form

ζ̂ (y) = Z1 exp(−αy) + Z2 exp(−βy) + Z3 exp(α[y − B]) + Z4 exp(β[y − B]), (3.4)

with α = αre + iαim and β = βre + iβim the roots of the characteristic polynomial
aλ4 + bλ2 + c = 0, where we have taken without loss of generality the roots with a
positive real part, i.e. αre � 0 and βre � 0. By adopting (3.4), we implicitly assume
that the roots α and β are distinct and non-zero.

The polarization equations (2.10) show that the lateral structures û(y) and v̂(y) of
the flow field must have a form similar to (3.4) but involving different coefficients Uj

and Vj (j = 1, 2, 3, 4). The boundary conditions, requiring u = v = 0 at y = 0 and
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y = B , now lead to a linear system Az = 0, with

A =

⎡
⎢⎢⎢⎣

Pα− Pβ− Pα+e−αB Pβ+e−βB

Qα− Qβ− Qα+e−αB Qβ+e−βB

Pα−e−αB Pβ−e−βB Pα+ Pβ+

Qα−e−αB Qβ−e−βB Qα+ Qβ+

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎣

Z1

Z2

Z3

Z4

⎤
⎥⎥⎥⎦ . (3.5)

In (3.5), we have defined the following scalar quantities:

Pα± =
−(−Lαik ± f α)

L2
α + f 2

, Qα± =
−(±Lαα + f ik)

L2
α + f 2

, (3.6)

in which Lα = iγ 2 + ν(k2 − α2). By replacing α with β in the above, we analogously
define Pβ±, Qβ± and Lβ .

Non-trivial wave solutions only exist when the solvability condition

detA(k, α(k), β(k)) = 0 (3.7)

is satisfied. In (3.7), we have emphasized the direct and indirect dependencies on the
wavenumber k. As it turns out, the solvability condition (3.7) introduces three types
of wave solutions: (i) the viscous Kelvin mode (denoted with the subscript 0), (ii)
the viscous Poincaré modes (denoted with the subscripts m = 1, 2, . . .) and (iii) a
new type of mode (m = −1, −2, . . .). An analytical way of investigating these modes
involves an expansion of the three quantities (km, αm, βm) as a power series in ν1/2,
possibly including a negative power:

km = [km,−1ν
−1/2] + km,0 + ν1/2km,1 + νkm,2 + O(ν3/2), (3.8)

αm = αm,0 + ν1/2αm,1 + ναm,2 + O(ν3/2), (3.9)

βm = βm,−1ν
−1/2 + βm,0 + ν1/2βm,1 + νβm,2 + O(ν3/2). (3.10)

Subsequently considering the equations for αm and βm and the solvability condition
at increasing powers of ν1/2, the coefficients km,j , αm,j and βm,j are determined in
a systematic way (Appendix A). It is not guaranteed that the expansion converges.
Furthermore, the error induced by truncation is unknown. The first term in (3.8) has
been put between brackets because the leading term for the wavenumber is only for
the new type of mode (m < 0) proportional to ν−1/2. For the viscous Kelvin and
Poincaré modes (m � 0), we find km,−1 = 0 and km,0 	= 0, making the leading term in
(3.8) proportional to ν0. Note that inviscid Kelvin and Poincaré modes can then be
recovered by setting ν = 0, reducing (3.8) and (3.9) to k = km,0 and α = αm,0. (The
expressions for km,0 and αm,0 are given in Appendix A.)

In the next sections, the analytically obtained k-values are used as the starting
point for a numerical search routine in which the absolute value of the
determinant | detA(k, α(k), β(k))| is minimized while varying the wavenumber k. This
leads to accurate values of k and the other coefficients involved.

4. Results: properties of wave solutions
4.1. Parameter settings

Now we will investigate the properties of the wave solutions derived in the previous
section. As a reference case, we use parameter values typical for the semi-diurnal
lunar tide (‘M2’) in the Southern Bight of the North Sea (table 1). Hence, a 150 km
wide basin is considered, with a 25 m depth at a latitude of 52◦ north. The value of
the tidal elevation amplitude Z∗ in table 1 is based on the study of the North Sea by
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Parameter Symbol Value

Basin width B∗ 150 km
Basin depth H ∗ 25 m
Maximum elevation amplitude (at the coast) Z∗ 1.5 m
Latitude ϑ 52◦ north
Angular frequency of the M2 tide σ ∗ 1.41 × 10−4 rad s−1

Bottom-friction coefficient r∗ 1.2 × 10−3 m s−1

Horizontal eddy viscosity ν∗ 2.0 × 103 m2 s−1

Typical velocity scale (maximum at the coast) U ∗ 0.94 m s−1

Basin width (dimensionless) B 1.35 −
Coriolis parameter (dimensionless) f 0.82 −
Bottom-friction coefficient (dimensionless) r 0.34 −
Horizontal eddy viscosity (dimensionless) ν 1.14 × 10−3 −
Gravitational Froude number Fr 0.06 −

Table 1. Overview of parameter values, typical for the Southern Bight of the North Sea.

Sinha & Pingree (1997), from which we also take the value of the horizontal eddy
viscosity ν∗. Furthermore, the value of the friction parameter r∗ is based on Lorentz’
linearization of a quadratic friction law (Zimmerman 1982):

r∗ =
8

3π
CDU ∗

avg, U ∗
avg =

1

B∗

∫ B∗

0

U ∗ exp

(
−y∗

R∗

)
dy∗, (4.1)

with drag coefficient CD = 2.5 ·10−3 and typical velocity amplitude U ∗
avg = 0.57 m s−1,

here obtained as the lateral average of the along-channel flow amplitude of a classical
Kelvin wave (Pedlosky 1982, § 3.9). For our channel geometry, such an inviscid and
frictionless wave is characterized by a typical velocity scale U ∗ = Z∗√

g∗/H ∗ =
0.94 m s−1 already introduced in § 2 and by a Rossby deformation radius R∗ =
(g∗H ∗)1/2/f ∗ = 136 km.

Figure 2 shows the wavenumbers km of the modes in the complex plane, i.e. the
solutions to the solvability condition (3.7). We particularly see what happens when,
starting from the inviscid and frictionless case, dissipation is added to the system. For
r∗ = 0 and ν∗ = 0, the wavenumbers of the Kelvin mode (k0) and the Poincaré modes
(km with m > 0) are denoted by small squares in figure 2. Adding bottom friction
(r∗ = r∗

ref while ν∗ = 0) causes these wavenumbers to shift slightly in the complex
plane, as denoted by the crosses. For the Kelvin mode and the first Poincaré mode,
this shift can best be seen from the zoomed image in figure 2(b). When we also add
horizontally viscous effects (r∗ = r∗

ref and ν∗ = ν∗
ref ), two changes occur (circles). First,

the wavenumbers of the Kelvin and Poincaré modes experience a further shift in the
complex plane, which will be investigated in §§ 4.2 and 4.3. Second, the new type of
mode emerges (km with m < 0; also see figure 2c), which will be investigated in § 4.4.

4.2. Viscous Kelvin mode

Figure 3 shows snapshots of the elevation and flow field of the Kelvin mode, for
different parameter settings. The quantitative properties of the Kelvin mode are
summarized in table 2, showing the reference case (top row) and the case without
dissipation (second row) and separately considering the effects of variations in
bottom friction and horizontal viscosity. Apart from the dimensionless characteristics
derived in § 3 (wavenumber k0, coefficients α0 and β0), the following dimensional and
dimensionless quantities are tabulated.
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Figure 2. Wavenumbers km, plotted in the complex wavenumber plane: (a) overview, (b) zoom
of the Kelvin and first Poincaré modes, (c) zoom of the new type of mode. Three scenarios
are plotted, based on the parameter values in table 1: no dissipation (squares), bottom friction
only (crosses) and both bottom friction and horizontally viscous effects (circles).

r∗/r∗
ref ν∗/ν∗

ref k0 α0 β0 L∗ R∗ D δ∗
lat y∗

amph

(−) (−) (−) (−) (−) (km) (km) (−) (km) (km)

1 1 1.040 − 0.193i 0.809 + 0.093i 24.7 + 17.6i 671 137 0.31 4.5 −80
0 0 1 0.82 − 698 136 1 − 0

0 1 1.024 − 0.026i 0.850 − 0.031i 20.9 + 20.9i 681 131 0.85 5.3 −10
0.01 1 1.024 − 0.027i 0.850 − 0.029i 20.9 + 20.8i 681 131 0.85 5.3 −11
0.1 1 1.025 − 0.043i 0.850 − 0.017i 21.3 + 20.5i 681 131 0.77 5.2 −17
0.5 1 1.029 − 0.110i 0.837 + 0.035i 22.8 + 19.2i 678 133 0.51 4.9 −45
1 1 1.040 − 0.193i 0.809 + 0.093i 24.7 + 17.6i 671 137 0.31 4.5 −80
2 1 1.077 − 0.348i 0.726 + 0.175i 28.8 + 15.1i 648 153 0.13 3.9 −155

10 1 1.533 − 1.154i 0.304 + 0.134i 55.4 + 7.8i 455 365 0.01 2.0 −864

1 0 1.014 − 0.170i 0.786 + 0.131i − 688 141 0.35 − −74
1 0.01 1.017 − 0.172i 0.789 + 0.128i 247 + 176i 686 141 0.35 0.4 −75
1 0.1 1.022 − 0.177i 0.794 + 0.120i 78.2 + 55.8i 683 140 0.34 1.4 −76
1 0.5 1.032 − 0.186i 0.802 + 0.105i 35.0 + 24.9i 676 138 0.32 3.2 −78
1 1 1.040 − 0.193i 0.809 + 0.093i 24.7 + 17.6i 671 137 0.31 4.5 −80
1 2 1.050 − 0.203i 0.819 + 0.077i 17.5 + 12.5i 665 136 0.30 6.4 −82
1 10 1.092 − 0.253i 0.859 + 0.046i 7.82 + 5.53i 639 129 0.23 14.2 −94

Table 2. Properties of the Kelvin mode, for different values of r∗ and ν∗, relative to the
reference values in table 1. For ν∗ = 0, the coefficient β0 and hence the boundary-layer
thickness δ∗

lat do not exist.
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Figure 3. Viscous Kelvin wave, propagating to the right, showing snapshots of the surface
elevation ζ (left), along-channel flow u (middle) and cross-channel flow v (right): top row,
no dissipation (r∗ = ν∗ = 0); second row, friction only (ν∗ = 0); third row, reference
case; bottom row, exaggerated viscosity (ν∗ = 10ν∗

ref ). All other parameter values are as

in table 1. Light shades indicate positive elevations/velocities and dark shades negative
elevations/velocities. The thick line is the zero contour. Note that visualizing these wave
modes does not require any boundary conditions at the left and right boundaries of the plotting
domain.

First, the wavelength L∗ and the Rossby deformation radius R∗ (which is the
e-folding length scale of cross-channel amplitude decay) are given by

L∗ =
2π

K∗k0,re

, R∗ =
1

K∗α0,re

, (4.2)

respectively. As shown in table 2, both viscosity and bottom friction cause a decrease
in tidal wavelength (increase in k0,re) and therefore also a decrease in wave speed.
The effects on the Rossby deformation radius are different: viscous effects lead to a
decrease in R∗, and bottom friction leads to an increase in R∗.

Both dissipation mechanisms introduce amplitude decay in the direction of
propagation, which is reflected in the wavenumber becoming a complex quantity
(kim < 0). To quantify the decay, we define the factor D as the ratio of the
wave amplitudes at two locations separated by one wavelength in the longitudinal
direction:

D = exp

(
2πk0,im

k0,re

)
. (4.3)

In the absence of dissipation, one obtains D = 1; viscous effects and bottom friction
lead to D < 1 (table 2).

The most striking property of the viscous Kelvin mode is the presence of two
boundary layers along the channel boundaries y = 0, B , in which flow velocities
go to zero (figure 3). They are associated with the terms proportional to exp(−βy)
and exp(β[y − B]) in (3.4). The boundary-layer thickness δ∗

lat can now be quantified



430 P. C. Roos and H. M. Schuttelaars

as an e-folding length scale according to

δ∗
lat =

1

K∗β0,re

, (4.4)

which gives a value of 4.5 km in the reference case. As shown in table 2, increasing
bottom friction leads to a decrease in boundary-layer thickness, while increasing the
eddy viscosity leads to an increase in boundary-layer thickness. These qualitative
properties are confirmed when we approximate δ∗

lat by considering only the leading
term of β0 according in expansion (3.10). Using Appendix A, (4.4) then reduces to the
classical Stokes formula (Batchelor 1967) with a friction-induced correction factor μ:

δ∗
lat ≈ 1

K∗
[
β0,−1ν−1/2

]
re

=
ν1/2

K∗[γ
√

i]re
= μ

√
2ν∗

σ ∗ , μ =

√√
1 + r2 − r. (4.5)

The boundary layers have two further properties: a phase lead of the along-channel
flow with respect to the surface elevation and a small cross-channel flow component,
of order ν1/2. Bottom friction also introduces a slight phase lead of the flow field with
respect to the surface elevation but no cross-channel flow component. Furthermore,
due to viscous effects, the Kelvin wave solution is no longer independent of the
channel width (which is typical for the inviscid case).

Finally, the last column of table 2 characterizes the amphidromic system created by
two Kelvin waves, travelling in opposite directions. As we will see in § 5, this system
typifies the Taylor solution sufficiently far away from the basin’s closed end (provided
that all reflected Poincaré modes are evanescent; see § 4.3). The amphidromic points
are found on a line making an angle with the longitudinal boundaries. As shown
in Appendix B, the lateral displacement of two neighbouring amphidromic points is
given by

y∗
amph =

π

K∗k0,re

k0,im

α0,re

. (4.6)

For the cases either without friction or without viscosity, this expression can be further
elaborated (Appendix B). The negative values in table 2 indicate that subsequent
amphidromes, viewed in the direction of propagation, are closer to the coastline
to which the Kelvin wave is bound. The effects of two types of dissipation on
the amphidromic system of two Kelvin waves are qualitatively similar: increasing
dissipation causes an increase in y∗

amph.

4.3. Viscous Poincaré modes

In the inviscid and frictionless case, Poincaré modes are either free/unbound
(wavenumber km is real) or evanescent/bound (wavenumber is purely imaginary).
A critical value of the basin width exists,

B∗
cr = π

√
g∗H ∗

σ ∗2 − f ∗2
, (4.7)

such that for B∗ < B∗
cr all modes are evanescent, whereas for B∗ > B∗

cr a finite number
of modes is free and all others are evanescent. For the parameter values in table 1,
the basin width (B∗ = 150 km) is well below the critical value (B∗

cr = 608 km), so
all Poincaré modes turn out to be evanescent. Note that for a fixed basin width B∗,
one may equivalently derive a critical tidal frequency σ ∗

cr , a critical water depth H ∗
cr

(Hendershott & Speranza 1971) or a critical tidal period T ∗
cr (Brown 1973), such that

all Poincaré modes are evanescent for σ ∗ < σ ∗
cr , H ∗ > H ∗

cr or T ∗ > T ∗
cr .
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Figure 4. Lateral structure of the lowest viscous Poincaré mode (m = 1) showing amplitude
(solid line) and phase (dashed line) of three dimensionless quantities: (a) free-surface

elevation ζ̂ , (b) longitudinal flow velocity û and (c) lateral flow velocity v̂. Parameter values
are as in table 1.

The introduction of horizontally viscous effects (and, also, bottom friction; e.g.
see Sinha & Pingree 1997) somewhat complicates the classification into free and
evanescent modes. The free modes now display a slight decay in the direction of
propagation (wavenumber obtains a non-zero imaginary part), whereas the evanescent
modes obtain a slightly propagative character (wavenumber obtains a non-zero real
part; see figure 2). However, for small values of ν1/2 and r , these modifications are
small, and it is useful to refer to the inviscid and frictionless case to classify a mode
as free or as evanescent. The e-folding decay length, given by

L∗
m =

1

K∗|km,im| , (4.8)

equals 48 km for the lowest mode, which is slightly smaller than its inviscid counterpart
(50 km, parameter values as in table 1). In general, viscous effects are found to reduce
the e-folding length scale of along-channel decay for the evanescent modes or the
wavelength of the free modes. These observations hold for the higher Poincaré modes,
as well.

Just like the viscous Kelvin wave, the viscous Poincaré modes also have boundary
layers along y = 0 and y = B , in first approximation also satisfying Stokes formula
with correction factor μ as given in (4.5). These boundary layers can for example be
seen in figure 4(b), which shows the lateral structure of the longitudinal velocity of
the lowest Poincaré mode.

4.4. New type of mode

For each viscous Poincaré mode, we additionally find a new mode with a roughly
similar lateral structure. We emphasize that these modes entirely owe their existence
to the presence of horizontally viscous effects; for ν∗ = 0 they do not exist. The new
modes are all evanescent, with an e-folding decay length L∗

−m defined analogous to
(4.8). The along-channel e-folding decay length is bounded by

δ∗
long =

1

K∗|k−1,im| ≈ ν1/2

K∗
∣∣∣[γ √

−i
]

im

∣∣∣ = μ

√
2ν∗

σ ∗ , μ =

√√
1 + r2 − r. (4.9)

In this approximation, we have used the leading term of k0 according to expansion (3.8)
and Appendix A. Just like the boundary-layer thickness of the Kelvin and Poincaré
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Figure 5. Same as figure 4, but now for the lowest new type of mode (m = −1).

modes, this result satisfies Stokes boundary-layer formula, with the same friction-
induced correction factor μ as already given in (4.5).

Finally, let us compare the lateral structure of the lowest new mode (figure 5) with
that of the lowest viscous Poincaré mode (figure 4). The components of the flow
field have a similar structure: their absolute values (solid line) show a similar pattern,
whereas the phase curves (dashed line) are roughly inverted. Please note the difference
in strength of the lateral and the longitudinal flow component of the new mode. The
lateral structures of the free-surface elevation look rather different, with the phase of
the Poincaré mode clearly showing the (Coriolis-induced) propagation in the negative
y-direction.

5. Results: solution to the viscous Taylor problem
5.1. Superposition of normal modes: Galerkin approach

Now let us turn to the viscous Taylor problem, with the semi-enclosed basin geometry
depicted in figure 1(b) and an incoming Kelvin wave from +∞. The key step is to
write the solution as a superposition of the normal modes, derived in § 3 and analysed
in § 4. We thus consider a truncated sum of an incoming Kelvin wave, a reflected
Kelvin wave, M Poincaré modes and M new modes:

φ = φ̂inc
0 (y) exp(i[t + k0x]) +

M∑
m=−M

Cmφ̂m(y) exp(i[t − kmx]) + c.c., (5.1)

with

φ̂inc
0 (y) = (ζ̂0(B − y), −û0(B − y), −v̂0(B − y)). (5.2)

Recall that the Kelvin mode is denoted by the subscript m = 0, whereas Poincaré
modes are denoted by m > 0 and the new modes by m < 0. The first term in
(5.1), further detailed in (5.2), corresponds to the incoming Kelvin wave (based on
the symmetry properties mentioned in § 3). The incoming Kelvin wave travels in the
negative x-direction, and its amplitude has been fixed to unity at x = 0. (Note that
in the inviscid case, the new type of mode does not exist and the summation in (5.1)
would be from m = 0 to m = M , including only inviscid Kelvin and Poincaré modes.)

The above solution involves 2M +1 complex coefficients Cm, to be determined from
the no-slip boundary condition along the lateral basin boundary x = 0. To this end,
various methods can be used. We follow a Galerkin approach, which minimizes a
residual ε that, according to the no-slip boundary condition at the closed end, should
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be zero:

ε =
1

B

∫ B

0

(|u(0, y)|2 + |v(0, y)|2) dy. (5.3)

Minimizing ε implies that all partial derivatives of ε with respect to the coefficients Cm

must vanish. We thus obtain the following set of 2M + 1 equations:

M∑
n=−M

[
Cn

∫ B

0

(ûnûm + v̂nv̂m) dy
]

= −
∫ B

0

(ûincûm + v̂incv̂m) dy, (5.4)

for m = −M, . . . , M . The inviscid counterpart of the above is obtained by removing
the v-terms from (5.3) and (5.4). The linear set of equations (5.4) is solved by means
of a standard method.

(Alternatively, one may adopt a collocation technique. In the viscous case, however,
this method is rather sensitive to the choice of collocation points and constraints.
The following procedure turns out to work, but not better than Galerkin. Define
equidistant collocation points yn = nB/(2M +2), and require the longitudinal velocity
to vanish at M + 1 points with an odd index and the lateral velocity to vanish at M

points with an even index (n = 1, 2, . . . , 2M + 1).)

5.2. Properties of the solution

Figure 6 shows the amphidromic system, obtained using the Galerkin method with
M = 12, for different parameter settings. Details of the flow field in the lower
left corner of the domain are shown, as well. The viscous solution clearly displays
boundary layers, along the longitudinal coastlines y = 0, B as well as along the
transverse one at x = 0. The latter boundary layer is due to the new type of mode,
as described in § 4.4.

Now let us turn to the details of the amphidromic system. Sufficiently far away
from the closed basin boundary (and, additionally, if B < Bcr such that all reflected
modes are evanescent), the solution shows amphidromic points on a line, making
an angle with the longitudinal direction (figure 6). In the absence of dissipation, i.e.
for r∗ = ν∗ = 0, this line coincides with the centreline of the basin (figure 6a). This
property can be explained by noting that the far-field Taylor solution is characterized
by the superposition of two Kelvin waves: an incoming one and a reflected one.
In § 4.2, we already investigated the effects of dissipation on such a system of two
Kelvin waves (also see Appendix B). We conclude that the horizontal eddy viscosity
has a similar effect on the amphidromic points as bottom friction (Hendershott &
Speranza 1971; Rienecker & Teubner 1980; Rizal 2002).

For a channel width exceeding the critical value, the amphidromic system is more
complicated. Analogous to the inviscid case, the far-field solution then also contains
a finite number of free Poincaré modes. The amphidromic points then result from a
complex interference pattern of the two Kelvin waves mentioned above and the free
Poincaré modes, which have a wavelength much larger than that of the Kelvin mode.

5.3. Comparison with observations

Now we will compare our idealized model results with observations in the Southern
Bight of the North Sea. Tidal amplitudes and phases of the semidiurnal lunar tide are
available from various stations along the English, French, Belgian and Dutch coasts
(Sinha & Pingree 1997; RIKZ 2002).

Our procedure consists of the following steps. A rectangular basin geometry is
drawn that, upon visual inspection, provides the best match with the coastlines in
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Figure 6. Taylor solution, for different parameter settings: top row, no dissipation (r∗ = ν∗ =
0); second row, friction only (ν∗ = 0); third row, reference case; bottom row, exaggerated
viscosity (ν∗ = 10ν∗

ref ). Other parameter values are as in table 1, with truncation number
M = 12. The leftmost plots show co-amplitude lines (solid lines, with an interval of 20 cm)
and co-phase lines (dashed lines, dividing the tidal period into 12 intervals). To visualize the
boundary layers in the lower left corner, the two plots on the right show the longitudinal and
lateral flow amplitudes.

the Southern Bight (150 km × 150 km; see figure 7a). Next, the location of each tide
station, inside or outside the model basin, is projected orthogonally on to the nearest
basin boundary. The tide stations thus become points along the perimeter of the model
basin, which allows us to compare results and observations as a function of a one-
dimensional perimeter coordinate. Model runs are then performed for fixed values of
the water depth, Coriolis parameter, bottom-friction coefficient and horizontal eddy
viscosity (table 1, using the Galerkin approach with truncation number M = 12).
Although not systematically, we have varied the amplitude and phase shift of the
incoming Kelvin wave to obtain a best fit with the observations.

The basin geometry, the tide stations and the model results are shown in figure 7.
The tidal phase shows good agreement between model and observations, except in
the western corner near the outflow of the river Thames. The agreement with respect
to amplitude is somewhat poorer but qualitatively reasonable. Adding a realistic
horizontal viscosity does not improve the fit.

Note that a fit with two Kelvin waves only, as done by Hendershott & Speranza
(1971) for the Adriatic Sea and the Gulf of California, is inadequate here. Our focus



Horizontally viscous effects in a tidal basin 435

0° 1° 2° 3° 4°

51°

52°

53°
N

S

W
E

Longitude (east)

L
at

it
u
d
e 

(n
o
rt

h
)

(a) Geometry and tide stations (b) M2 amplitude (cm) (c) M2 phase (deg.)

N W S E
0

50

100

150

200

250

Perimeter coordinate

N W S E

0

90

180

Perimeter coordinate

Figure 7. Comparison between model results and tide observations in the Southern Bight of
the North Sea: (a) model geometry and tide gauge stations (open circles, original locations;
filled circles, projected), (b) M2 amplitude and (c) M2 phase. Both the model results (solid
line, viscous; dashed line, inviscid) and the observations (circles) are plotted as a function of
the perimeter coordinate. Parameter values are as in table 1 (M = 12).

is on tide propagation along or near the basin’s closed end, where Poincaré modes
are crucial. Furthermore, the contribution of the lowest Poincaré mode is felt in the
interior of the basin, since the e-folding decay length (48 km; see § 4.3) is not small
compared to the basin length (150 km). The following factors, not accounted for
in our idealized model, complicate the above comparison: (i) complex coastline and
slight funnel shape; (ii) connections to other waters, mainly the Dover Strait (see
Brown 1987, 1989) but also the river Thames and Western Scheldt; (iii) non-uniform
bottom topography; and (iv) the open boundary to the north.

The qualitative properties of tide propagation in the Southern Bight of the North
Sea are fairly reproduced by the idealized model. Accurate quantitative agreement,
however, cannot be expected in view of the complicated setting.

6. Conclusions
We have solved the viscous Taylor problem; i.e. we have extended the original Taylor

(1921) problem of Kelvin wave reflection in a semi-enclosed basin to account for
horizontally viscous effects. The solution, written as a truncated sum of normal modes,
involves three types of wave solutions in an infinite channel: viscous counterparts of
the Kelvin and Poincaré modes, as well as a new type of mode. Each of these modes
displays boundary layers, with a thickness that can be approximated by Stokes’
formula, modified by a friction-induced correction factor. The longitudinal length
scales of the viscous Kelvin and Poincaré modes (wavelength for the free modes,
e-folding decay distance for the evanescent modes) are smaller than in the inviscid
case, an effect also caused by bottom friction. Contrary to bottom friction, viscous
effects lead to a decrease in Rossby deformation radius. The new type of mode are
all evanescent waves, with an e-folding decay distance that can be approximated by
the same modified Stokes’ formula mentioned above.

The solution is then written as a superposition of these normal modes: an incoming
Kelvin wave and a truncated sum of reflected modes. A Galerkin technique is applied
to satisfy no slip at the basin’s closed boundary. The solution shows boundary layers
along the longitudinal boundaries as well as along the basin’s closed end, the latter
created by the new type of mode, and amphidromic points on a line making an angle
with the longitudinal direction.
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We conclude that the introduction of a horizontal eddy viscosity affects both the
qualitative and quantitative properties of the Taylor solution and the underlying
normal modes. Parameter values typical for the Southern Bight of the North Sea
suggest that the quantitative aspects are dominated by bottom friction rather than
by viscous effects. Using these values and approximating the Southern Bight with a
rectangular embayment, the qualitative properties of tide propagation are reasonably
well reproduced by the idealized model.

This work is supported by the Netherlands Technology Foundation STW, the
applied science division of NWO and the Netherlands Ministry of Economic Affairs.
We thank three anonymous reviewers for their comments.

Appendix A. Details of the expansion in powers of ν1/2

A.1. Introduction

This section contains the details of the expansion in powers of ν1/2, as shown in (3.8)–
(3.10). First recall that the three equations are the α-expression, the β-expression and
the solvability condition, given by

aα4 + bα2 + c = 0, aβ4 + bβ2 + c = 0, detA = 0, (A 1)

respectively. The coefficients a, b and c have been specified in (3.3), and the matrix A
has been specified in (3.5). Considering the α-expression at O(ν−1), we obtain

k2
m,−1

(
k2

m,−1 + γ 2i
)

= 0. (A 2)

The different roots of this equation now lead to two different classes of wave solutions:
the double root km,−1 = 0 corresponds to the viscous Kelvin and Poincaré modes,
whereas the two roots k2

m,−1 = −γ 2i correspond to the new type of modes, left bound
and right bound. By symmetry, it suffices to consider only wavenumbers with a
negative or zero imaginary part.

A.2. Viscous Kelvin and Poincaré modes

First, let us investigate the root km,−1 = 0. The β-expression, subsequently evaluated
at O(ν−1) and O(ν−1/2), now leads to

β2
m,−1

[
β2

−1 − iγ 2
]

= 0, (A 3)

2βm,0βm,−1

[
2β2

m,−1 − iγ 2
]

= 0, (A 4)

which leads to βm,−1 = γ
√

i (assuming βm,−1 to be non-zero – otherwise, αm and βm

become identical) and βm,0 = 0. Next, the α-expression at O(ν0) and the solvability
condition at O(ν−1) give a coupled set of equations for k0 and α0:(

f 2k2
m,0 − γ 4α2

m,0

)
sin(iαm,0B) = 0, (A 5)

k2
m,0 − α2

m,0 + f 2/γ 2 − γ 2 = 0. (A 6)

Here we simply find the characteristics of the inviscid Kelvin mode (km,0 = γ ,
αm,0 = f/γ ) and Poincaré modes (αm,0 = mπi/B , km,0 = [γ 2 − (f/γ )2 − (mπ/B)2]1/2,
for m = 1, 2, . . .), both including bottom friction (Rienecker & Teubner 1980).

Next, βm,1 is determined from the β-expression at O(ν0). The coefficients km,1

and αm,1 are obtained from combining the α-expression at O(ν1/2) and the solvability
condition at O(ν−1/2) (see table 3). Repeating this loop at increasing powers of ν1/2,
one may subsequently obtain (βm,2, km,2, αm,2), (βm,3, km,3, αm,3) and so forth.



Horizontally viscous effects in a tidal basin 437

α-expression β-expression Solvability condition Result(s)

1. – O(ν−1) – β0,−1 = γ
√

i
2. – O(ν−1/2) – β0,0 = 0
3. O(ν0) – O(ν−1) α0,0 = F

k0,0 = γ

4. – O(ν0) – β0,1 = (γ 2 − F2)/(2β0,−1)
5. O(ν1/2) – O(ν−1/2) α0,1 = γ 2 coth(FB)/β0,−1

k0,1 = f coth(FB)/β0,−1

1. – O(ν−1) – βm,−1 = γ
√

i
2. – O(ν−1/2) – βm,0 = 0
3. O(ν0) – O(ν−1) αm,0 = mπi/B (for m = 1, 2, . . .)

k2
m,0 = γ 2 − F2 + α2

m,0

(take root with imaginary part � 0)
4. – O(ν0) – βm,1 = (k2

m,0 − F2)/(2βm,−1)
5. O(ν1/2) – O(ν−1/2) αm,1 = (2k2

m,0αm,0)/(βm,−1B[α2
m,0 − F2])

km,1 = (2km,0α
2
m,0)/(βm,−1B[α2

m,0 − F2])

1. O(ν−1) – – km,−1 = γ
√

−i

2. – O(ν−1) – βm,−1 = γ
√

−i
3. O(ν−1/2) – – km,0 = 0
4. – O(ν−1/2) – βm,0 = 0
5. – – O(ν−2) αm,0 = mπi/B (for m = −1, −2, . . .)
6. O(ν0) – – km,1 = (F2 + α2

m,0)/(2km,−1)
7. – O(ν0) – βm,1 = (2F2 + α2

m,0 − γ 2)/(2βm,−1)
8. – – O(ν−3/2) αm,1 = 2αm,0/(βm,−1B)

Table 3. Expansion coefficients for αm, βm and km corresponding to the viscous Kelvin mode
(top, m = 0), the viscous Poincaré modes (middle, m > 0) and the new type of modes (bottom,
m < 0). Notation: F = f/γ .

A.3. New modes

Now let us proceed with the second root of (A 2), namely km,−1 = γ
√

−i. Evaluating
the α-expression at O(ν−1/2) gives

km,−1km,0

(
2k2

m,−1 + γ 2i
)

= 0, (A 7)

which leads to km,0 = 0. Considering the β-expression at O(ν−1) and at O(ν−1/2) while
requiring βm,−1 	= 0, we now obtain βm,−1 = km,−1 and βm,0 = 0. Using these results in
the solvability condition at O(ν−2) gives

(γ 4 − f 2) sin (iαm,0B) = 0. (A 8)

This leads to αm,0 = mπi/B for m = −1, −2, . . . , which is identical to the Poincaré
case, thus emphasizing that for each viscous Poincaré mode a new mode can be found.
Furthermore, it is apparent that there is no such equivalent of the viscous Kelvin
mode.

Next, subsequently considering the α-expression at O(ν0), the β-expression at O(ν0)
and the solvability condition at O(ν−3/2) allows us to obtain km,1, βm,1 and αm,1,
respectively (see table 3). Repeating this loop at increasing powers of ν1/2, one may
subsequently obtain (km,2, βm,2, αm,2), (km,3, βm,3, αm,3) and so forth.
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Appendix B. Amphidromic system of two Kelvin waves
The free-surface elevation of an incoming Kelvin wave (propagating to the left)

and a reflected Kelvin wave (with complex amplitude C0, propagating to the right) is
given by

ζ (x, y, t) = ζ̂ (B − y) exp(i[t + k0x]) + C0ζ̂ (y) exp(i[t − k0x]) + c.c. (B 1)

Equating the absolute values of the two wave contributions in (B 1) leads to a
necessary but not sufficient condition for the amphidromic points:

exp(2k0,imx) =
|ζ̂ (B − y)|
|C0ζ̂ (y)|

. (B 2)

Independent of C0, this result simplifies to a straight line for those regions in which
the lateral structure of the Kelvin wave is dominated by a single exponential term,
i.e. where ζ̂ (y) ≈ Z1 exp(−αy). This condition is exactly satisfied by the inviscid
Kelvin wave; it is approximately satisfied in the interior region of the viscous Kelvin
wave, i.e. well away from the two boundary layers. The lateral displacement of two
neighbouring amphidromic points is then given by (4.6) in § 4.2. In the general case
of arbitrary r and ν further elaboration of (4.6) is rather cumbersome. However, by
isolating the two dissipation mechanisms, we find

r = 0: y∗
amph = − π

K∗

√
ν

2
coth(f B) + O(ν), (B 3)

ν = 0: y∗
amph = − π

K∗
ξ

√
2(ξ − 1)

f (ξ + 1)
, ξ =

√
1 + r2, (B 4)

respectively. In (B 3), we have used Appendix A. Equation (B 4) confirms the findings
by Rizal (2002), who identified the amphidromic points in the inviscid (but frictional)
Taylor solution using a numerical search routine.
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